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INTRODUCTION

Nonclinical safety pharmacology studies are an essential 
part of the drug development workflow.1 The S7A guide-
line of the International Council for Harmonization of 
Technical Requirements for Pharmaceuticals for Human 
Use emphasizes the importance of identification and eval-
uation of undesirable pharmacodynamic (PD) properties 

of new substances on the cardiovascular (CV) system 
prior to first administration in humans. Of note, CV-
related adverse drug reactions, including treatment-me-
diated cardiac rhythm disturbances, changes in arterial 
blood pressure, and thromboembolic complications, stand 
out as one of the most common causes of market with-
drawal.1,2 As the projects approach toward candidate se-
lection, assessments are made using in  vitro assays and 
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Abstract
Assessment of drug-induced effects on the cardiovascular (CV) system remains 
a critical component of the drug discovery process enabling refinement of the 
therapeutic index. Predicting potential drug-related unintended CV effects in the 
preclinical stage is necessary for first-in-human dose selection and preclusion of 
adverse CV effects in the clinical stage. According to the current guidelines for 
small molecules, nonclinical CV safety assessment conducted via telemetry analy-
ses should be included in the safety pharmacology core battery studies. However, 
the manual for quantitative evaluation of the CV safety signals in animals is avail-
able only for electrocardiogram parameters (i.e., QT interval assessment), not for 
hemodynamic parameters (i.e., heart rate, blood pressure, etc.). Various model-
based approaches, including empirical pharmacokinetic-toxicodynamic analyses 
and systems pharmacology modeling could be used in the framework of teleme-
try data evaluation. In this tutorial, we provide a comprehensive workflow for the 
analysis of nonclinical CV safety on hemodynamic parameters with a sequential 
approach, highlight the challenges associated with the data, and propose respec-
tive solutions, complemented with a reproducible example. The work is aimed 
at helping researchers conduct model-based analyses of the CV safety in animals 
with subsequent translation of the effect to humans seamlessly and efficiently.

http://www.psp-journal.com
https://doi.org/10.1002/psp4.13082
https://orcid.org/0000-0001-9289-7262
https://orcid.org/0000-0003-0594-7423
https://orcid.org/0000-0003-2342-2495
https://orcid.org/0000-0003-0678-5729
https://orcid.org/0000-0003-1456-4862
mailto:
https://orcid.org/0000-0001-7066-0811
mailto:
https://orcid.org/0000-0002-1463-0367
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:victor.sokolov@msdecisions.tech
mailto:victor.sokolov@msdecisions.tech
mailto:ravindra.alluri@astrazeneca.com
mailto:ravindra.alluri@astrazeneca.com


6 |   KULESH et al.

in vivo studies, as to whether CV safety risks are accept-
able in the context of species-species effects and predicted 
therapeutic margins.3 Nonclinical CV safety assessment 
includes telemetry studies in conscious animals where 
continuous data of electrocardiogram (ECG; e.g., QT in-
terval) and hemodynamic (e.g., heart rate, blood pres-
sure, and contractility of the ventricles) parameters are 
collected, and warrants model-based analyses to predict 
potential unintended CV effects.1,4 Currently used model-
ing and simulation methods for telemetry data evaluation 
include empirical and physiologically based approaches.5 
The latter aims to describe the interactions between vari-
ous CV markers systemically and mechanistically, and, as 
such, is expected to be more reliable in between-species 
translation. However, the complexity of the CV system 
and the lack of data for thorough investigation of interspe-
cies differences brings on additional assumptions, which 
makes the model-based translation challenging, especially 
for the first-in-class compounds.6,7 Furthermore, develop-
ment of the mechanistic models de novo usually requires 
extensive timeframes and lacks agility often sought for in 
early drug development.8 On the other hand, empirical or 
pharmacokinetic (PK)/PD approaches, while mostly ig-
nores the physiological context represents a flexible tool 
for quick and transparent fit-for-purpose analysis of te-
lemetry data.5

The existing guidelines cover the quantitative evalua-
tion of ECG parameters, such as PK/PD analyses for QT 
interval prolongation comparison and in  vitro-driven 
systems biology models for ECG changes, and respective 
workflows more extensively compared to the modeling 
of the hemodynamic markers.9,10 However, treatment-in-
duced changes in hemodynamic measurements are equally 
widespread among the drugs.11 Moreover, nonclinical te-
lemetry study design and data patterns (i.e., continuous 
and frequent telemetry data recording; study separation 
into telemetry and PK data collection phases; substantial 
handling effects; and usually small sample size) distin-
guish the subsequent model-based analyses from its typi-
cal clinical counterparts.5,12 Taken together, this makes the 
task of creating a strategy for the model-based assessment 
of CV safety on hemodynamic parameters highly relevant. 
In this tutorial, we provide a comprehensive workflow for 
nonclinical CV safety analysis of hemodynamic markers 
using empirical PK/PD models which covers all essen-
tial challenges in model development and interspecies 
translation. The workflow is comprised of four sequential 
steps, for each step, the main complications are explored, 
and solutions proposed, complemented by a reproduc-
ible example for an anti-inflammatory compound, which 
can be used for efficient model-based analyses of the CV 
safety of new drug candidates in R software13 and Monolix 
environment.14

TYPES OF STUDIES AND DATA

Nonclinical studies for CV safety assessment are con-
ducted primarily in rats, guinea pigs, dogs, and cyn-
omolgus monkeys.15 The choice of species depends on 
the stage of the project and an understanding on the po-
tential mechanisms based on in  vitro data generated in 
secondary/safety pharmacology screens along with pri-
mary pharmacology considerations. Study animals are 
equipped with telemetry recording devices and are given 
a range of doses of an investigated compound as well as 
placebo. CV measurements of interest, for example, arte-
rial pressure, heart rate, and contractility of the ventricles, 
are recorded with a telemetry device over 24 h or more, 
to ensure continuous data collection throughout the full 
period of drug exposure.16 Single or multiple doses can 
be administered throughout a study, single-dose studies 
possessing either parallel or crossover (partial or full Latin 
square) assignment design.17 The latter is arguably more 
prevalent as it allows to minimize the number of animals 
required to conduct a study, although at the cost of study 
duration.18,19 In contrast, multiple-dose studies are associ-
ated with the parallel assignment and are used for the as-
sessment of delayed or cumulative CV effects. In all cases, 
the number of animals per study arm rarely exceeds eight 
animals.19

CV measurements tend to follow day and night cycles 
(i.e., circadian variations).20 Furthermore, handling effects 
caused due to dosing and/or PK sampling often interfere 
with CV measurements, despite the efforts to minimize 
the impact during telemetry data recording.21 Usually, 
only a single PK sample is collected from animals during 
the telemetry recordings, whereas detailed PK profiling 
is performed in a separate phase of the original telemetry 
study or in a satellite study on an entirely different set of 
animals.12,22

Sampling frequency of telemetry recordings may vary 
considerably depending on the telemetry device, animal, 
and type of CV measurement.23 Ideally, the measurements 
are continuous, averaged over predefined time intervals 
for the subsequent analyses. Binning of data over large 
time intervals may obscure handling effects and circadian 
variations. Based on the history of our analyses, we rec-
ommend keeping it at or below 15 min for rats and use 
the specific timepoint ranges (e.g., every 30 min until the 
first 4 h after dosing, every 2 h between 4 and 12 h, and the 
subsequent measurements can be binned at 4-h intervals), 
chosen based on the PK profile of the compound for dogs. 
Other averaging strategies include using the data from the 
first 5 min of each hour24 or dividing a time series into 
evenly spaced 30, 60, or 120 min intervals.25

At the preclinical stage of drug development, human 
PK data are not available. Therefore, conventional 
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allometric scaling from in vivo animal data, mechanistic 
(e.g., in vitro to in vivo extrapolation) and/or translational 
modeling methods like physiologically-based pharma-
cokinetic (PBPK) modeling are used to obtain predicted 
human PK parameters.26,27

OVERVIEW OF THE WORKFLOW

The framework of this tutorial is represented by a work-
flow for the model-based analyses of nonclinical telemetry 
studies of CV safety pharmacology, which uses a sequen-
tial approach and consists of four consecutive steps: (1) PK 
modeling, (2) quantification of circadian variations and 
handling effects, (3) drug effect modeling, and (4) animal-
to-human translation (Figure 1). The purpose of the first 
step is to develop an optimal PK model for the compound 
in question. Circadian variations and the effects from 
animal handling are the subjects of the second step. The 
functional relationship between drug exposure and PD re-
sponse is quantified with a model fit to the PD data, con-
ditional on the parameters estimated on the previous steps 
of the workflow. Finally, the animal PK model is replaced 
by the human PK model, and the biomarker response is 
evaluated in the range of clinically relevant exposures. 
The choice of the sequential approach over the simultane-
ous one is substantiated by the small number of animals 
coupled with the complex patterns in the data (discussed 
below) and sparce PK sampling.28 Furthermore, steps 2 
to 4 are conducted independently for each type of meas-
urement, whereas PK model structure and parameters re-
main the same.

All steps are preceded by an exploratory analysis of 
the available measurements which aims to decompose 

observed data to provide qualitative priors for the sub-
sequent mathematical modeling. The main set of the 
exploratory plots for PK includes visualization of time 
series of drug concentration measurements, by ani-
mal and aggregated, as well as different metrics of ex-
posure (average, peak and trough concentrations, and 
area under curve [AUC]) across doses, study phases, 
or studies (Figure  2a–c). Thorough telemetry data ex-
ploration requires visualization of unadjusted, base-
line-adjusted, and baseline-adjusted placebo-corrected 
time profiles of each biomarker, aggregated by study 
arm (Figure 2d–f).

Each stage of the workflow can be associated with 
multiple challenges. We attempted to summarize them 
all, together with respective solutions, in a comprehensive 
and organized manner (subsequent sections; Table  1), 
to provide a practical guide for the pharmacometricians 
and boost the efficiency of such analyses. Mathematical 
models applied for the task are based on the nonlinear 
systems of ordinary differential equations (ODEs), their 
development relies on numerical methods of solving the 
direct and inverse problems which are well-established 
and implemented in various software, such as MATLAB,29 
NONMEM,30 Monolix,14 R packages,13 etc.31 As we are uti-
lizing conventional metrics and criteria for model devel-
opment and selection, we will not be covering them in this 
tutorial and will refer the reader to the respective guides 
and reviews.32,33

PK MODELING

Compartmental modeling of individual PK data has been 
extensively studied and utilized in drug development for 
over 40 years.34,35 It works equally well for preclinical and 
clinical data alike.36 One of the typical examples of such 
models (2-compartment with first-order absorption) is 
represented by ODEs in Equations 1–3:

where Ad is the amount of drug in dosing compartment; 
Ac is the amount of a drug in central compartment; Ap 

(1)
dAd
dt

= − ka ∗Ad,

(2)
dAc
dt

= ka ∗Ad −
CL

Vc
∗Ac +

Q

Vp
∗Ap −

Q

Vc
∗Ac,

(3)
dAp

dt
=
Q

Vc
∗Ac −

Q

Vp
∗Ap,

(4)Cc =
Ac
Vc
,

F I G U R E  1  Sequential workflow of model-based telemetry data 
analyses.
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is the amount of a drug in peripheral compartment; ka 
is the absorption rate constant; Vc is the central volume 
of distribution; Vp is the peripheral volume of distribu-
tion; CL is the linear clearance; Q is the intercompart-
ment clearance; and Cc is drug concentration in central 
compartment.

The choice of the structural model is driven primarily 
by the available PK measurements and prior knowledge of 
the physiochemical and PK properties of the compound.37 
The doses, usually administered orally in CV studies, are 
designed to achieve a wide range of plasma and tissue ex-
posures that enables meaningful detection of CV signals. 
High doses (supratherapeutic) can often lead to nonlin-
earities in absorption and/or systemic clearance, which 
can be detected early by plotting various dose-adjusted 
measures of exposure against the dose and estimating the 
significance of the slope in the respective linear relation-
ship (Figure 2c). If the slope parameter is not statistically 

significant (i.e., 95% confidence interval includes zero), 
the exposure increases in proportion to the dose, and the 
structural model can be used as is. Otherwise, some mod-
ifications may be required, depending on the observed 
trends.

A decrease in the average drug concentration or AUC 
measured throughout the dosing period relative to the dose 
(Figure 2c, left panel) can be captured either explicitly, by 
introducing dose-dependent bioavailability (Equation 5), 
or more physiologically, by implementing additional rate 
to Equation 1 (Equation 6):

(5)Ad
(
tdose

)
= DOSE∗

(
1 −

Imax ∗DOSE(
DOSE + ID50

)
)
,

(6)
dAd
dt

= − ka ∗Ad − kex ∗Ad,

F I G U R E  2  Rat telemetry data visualization. (a) Semilogarithmic plot of plasma PK after single dose administered by oral gavage; dots 
with error bars—mean ± SE. (b) PK profiles stratified by dose; dots and thin lines—individual data, thick lines—mean trends. (c) Dose-
adjusted AUC and Cmax versus dose; dots with error bars—mean ± SE, dashed blue line—linear regression. Change over time in heart rate 
(d), baseline-adjusted (e), baseline- and placebo-adjusted (f); dots with error bars—mean ± SE. AUC, area under the curve; CFB, change from 
baseline; CFP, change from placebo; Cmax, maximum plasma concentration; PK, pharmacokinetic.
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T A B L E  1  Challenging patterns in the data and respective modeling solutions.

Data pattern Exploratory plot Modeling solution

PK modeling

Exposure is not dose-proportional 
(lower than expected)

Dose-adjusted exposure versus 
dose (Figure 2c, left panel)

• Dose-dependent bioavailability:

• Excretion from the intestine:

Exposure is not dose-proportional 
(higher than expected) or two 
phases of elimination

Dose-adjusted exposure versus 
dose (Figure 2c, left panel)

• Combination of linear and saturable elimination:

Cmax is not dose-proportional 
(lower than expected)

Dose-adjusted Cmax versus dose 
(Figure 2c, right panel)

• Saturable absorption:

Cmax is not dose-proportional 
(higher than expected)

Dose-adjusted Cmax versus dose 
(Figure 2c, right panel)

• Saturable excretion from the intestine

Notable between-study variability Aggregated PK profiles stratified 
by study (Figure 3c)

• Introduce study as a categorical covariate on one or more 
PK parameters

Notable between-animal 
variability in PK data

Individual PK profiles (Figure 2b) • Introduce random effects on one or more PK parameters

Marked differences in PK 
between two phases of a single 
study

Individual or aggregated PK 
profiles stratified by study 
phases

• For parallel assignment studies: introduce study phase as a 
categorical covariate on one or more PK parameters

• For crossover studies: introduce between-occasional 
variability

Handling effect and circadian variations modeling

Interspecies differences in 
circadian variations

Time course of CV marker in 
placebo arm (Figure 2d,e)

• Use single cosine function as a circadian variation model:

• Add additional cosine function for intraday harmonic 
variations, if needed

Observed handling effects 
associated with feeding and 
blood sampling

Time course of CV marker in 
placebo arm (Figure 2d,e)

• Test different functions to describe handling effect:
Exponential function: 

HE(t)=

{
Mhe ∗exp

(
−khe ∗

(
t− tevent

))
, t≥ tevent

0, t< tevent

Biexponential function: 

HE(t)=

⎧
⎪⎨⎪⎩

Mhe ∗

�
exp

�
−khe ∗

�
t− tevent

��
−

exp
�
−ka ∗

�
t− tevent

��
�
, t≥ tevent

0, t< tevent

Gaussian function: 

Different shapes between 
handling effects within single 
observation period

• Use different magnitudes for different handling effects

Apparent threshold in the 
magnitude handling effect

• Introduce physiologically based maximum for selected 
markers

Ad

(
tdose

)
= DOSE∗

(
1 −

Imax∗DOSE

(DOSE+ ID50)

)

dAd

dt
= − ka ∗Ad − kex ∗Ad

dAc
dt

= ka ∗Ad − CL∗Cc −
Vm∗Cc

(Km +Cc)

dAd
dt

= −
Va∗Ad

(IA50 +Ad)

dAd

dt
= − ka ∗Ad −

Vex ∗Ad(
IA50 + Ad

)

CR(t) = kw ∗ cos
(
2�(t − k0)
kperiod

)

HE(t)=

⎧⎪⎨⎪⎩

Mhe ∗exp

�
−
(t−k1)

2

2∗k2
2

�
, t≥ tevent

0, t< tevent

(Continues)
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where Ad is the amount of drug in dosing compartment; 
DOSE is the dose of the compound; Imax is the maximum ef-
fect (Imax ∈ [0, 1]); ID50 is the dose corresponding to the 50% 
of the maximum effect; ka is the absorption rate constant; 
and kex is the excretion rate constant.

Likewise, if the dose-adjusted maximum concentration 
(Cmax) falls with dose (Figure 2c, right panel), Equation 1 is 
to be changed to include saturable absorption (Figure 3a, 
Equation 7):

where Va is the maximum absorption rate; IA50 is the 
amount of the drug required to achieve 50% of the maxi-
mum absorption rate; and Ad is the amount of drug in dos-
ing compartment.

In some cases, a reverse trend can be observed—when 
AUC or Cmax is more than dose proportional. Such behav-
ior AUC can be captured by using second, saturable clear-
ance in Equation 2 (Equation 8):

(7)
dAd
dt

= −
Va ∗Ad(
IA50 + Ad

) , (8)
dAc
dt

= ka ∗Ad − CL∗Cc −
Vm ∗Cc(
Km + Cc

) ,

Data pattern Exploratory plot Modeling solution

Drug effect modeling

Unknown functional relationship 
between PK and drug effect

Time course of CV marker in 
treatment arms (Figure 2d,e)

• Test different functional relationships:
Linear model:

Emax-model:

Handling effect interferes with 
the drug effect

Baseline-adjusted placebo-
corrected time course of CV 
marker in treatment arms 
(Figure 2f)

• Exclude handling effect from the drug effect modeling
• Simultaneous placebo and drug effect parametrization with 

physiologically based maximum threshold for a biomarker

Delay in the drug effect Concentration-effect plot linked by 
the timepoints (Figure 5b)

• Introduce biophase effect compartment:

• Replace explicit function with a turn-over equation for a 
biomarker

Apparent decrease of the drug 
effect over time

Observed PD versus predicted PK 
time profiles (Figure 5d)

• Introduce time-dependent adaptation function (linear, 
exponential, Michaelis–Menten or Hill functions):

Eff = keff ∗Cc

Eff =
Emax∗Cc

�

EC50
� +Cc

�

dCe
dt

= ke ∗
(
Cc − Ce

)

Effadapt = Eff∗
(
1 − t�

ET50
� + t�

)

T A B L E  1  (Continued)

F I G U R E  3  Time profiles of observed and predicted PK in rats. (a) PK model with saturable absorption; dots with error bars—
mean ± SE, curves—model predictions. (b) PK model with random effects; dots—individual observations, curves—individual predictions, 
ID—animal identifier. (c) PK model with study as a covariate on clearance and intercompartmental flux; dots with error bars—mean ± SE, 
curves—model predictions. PK, pharmacokinetic.
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where Ac is the amount of drug in central compartment; 
ka is the absorption rate constant; Ad is the amount of drug 
in dosing compartment; CL is the linear clearance; Vm is 
the maximum clearance (saturable); Km is the drug con-
centration required to achieve 50% of the maximum clear-
ance (saturable); and Cc is drug concentration in central 
compartment.

The increasing behavior of Cmax with dose can be ob-
served due to saturation in presystemic metabolism and 
can be described either by Equation 8 or by using satura-
ble excretion from the intestine (Equation 9):

where Ad is the amount of drug in dosing compartment; 
ka is the absorption rate constant; Vex is the maximum ex-
cretion rate; and IA50 is the amount of the drug required to 
achieve 50% of the maximum absorption rate.

Other complications, such as enterohepatic circu-
lation, can be present in the data as well and should be 
accounted for in the model.38 Such cases are unique and 
require a tailored approach for both preclinical modeling 
and subsequent translation to humans.

One of the main aims of the population PK modeling 
analyses is to distinguish between-subject variability from 
the residual error and attempt to partially explain it with 
individual properties, that is, the covariates.39 However, 
estimating random effects in telemetry studies with a 
small number of animals will inevitably result in over-
parameterization and shrinkage beyond any acceptable 
range.32 Nevertheless, if notable between-animal variabil-
ity, characterized by coefficient of variation exceeding 50% 
for the majority of the timepoints, is present in the data 
(Figure 3b), individual parameters can be estimated and 
fixed for the subsequent modeling steps to capture expo-
sure-response relationship more accurately. In extreme 
cases of variability in crossover design, additional levels of 
hierarchies in random effects can be included (i.e., occa-
sions). Inference regarding the distribution of random ef-
fects is limited because random effects are estimated from 
a small number of animals. If PK and PD measurements 
are made from different animals, instead of using indi-
vidual PK predictions for animals from telemetry study, 
population parameters from PK model are used for subse-
quent PD modeling.

Consequently, covariate search is also usually omitted. 
However, if a pooled analysis is being performed using the 
data from several telemetry studies, animal age, model, or 
the study itself can be used as a factor affecting parame-
ter estimates, regardless of the presence of random effects 
(Figure 3c).

HANDLING EFFECT AND 
CIRCADIAN VARIATIONS

CV markers, such as heart rate, blood pressure, and car-
diac contractility are susceptible to natural diurnal oscilla-
tions, specific for each type of measurement and animal.40 
Visualization of the continuous hemodynamic telemetry 
data collected within 24 h clearly illustrates these trends 
(Figure 2d,e).

Standard model-based approach to describe such 
data is to apply trigonometric functions that oscillate 
with specific amplitude and phase over a certain time 
period41:

where CR(t) is the time-dependent function to describe cir-
cadian variations; kw is the amplitude of oscillations; k0 is 
the horizontal displacement; and kperiod is the oscillations 
period.

Consequently, change over time in a biomarker in 
placebo cohort can be described by the following explicit 
function (Figure 4a,b):

where BIOMBL is the baseline value of a biomarker.
Ideally, parameters reflecting amplitude, horizontal 

displacement, and period of oscillations should be esti-
mated against the data in each specific modeling case. In 
practice, as the data are typically available in the range 
of 1 to 2 days and are always limited, by default, kperiod is 
fixed at 24 h to ease the computation of optimal parameter 
values, considering that physiological functions have 24 h 
rhythm.42 Furthermore, if the k0 parameter is not identi-
fiable (95% confidence interval for the point estimate in-
cludes zero), it can be set to zero as, apparently, no shift in 
the oscillation phase is required to describe the observed 
data.

On occasions when rich sampling is available, more 
than one trigonometric function can be parametrized 
(Figure 4c):

where CR1(t) … CRi(t) are structurally identical to 
Equation 11, but with unique sets of parameters.

However, based on our experience and historical data, 
identifying more than two cosine functions is challeng-
ing.6,7,43 Furthermore, the second circadian variation 
function has notably shorter period (~2 h) and amplitude 
(~12%), contributing little toward the accuracy of further 
predictions and, arguably, could be ignored.

(9)
dAd
dt

= − ka ∗Ad −
Vex ∗Ad(
IA50 + Ad

) ,

(10)CR(t) = kw ∗ cos

(
2�

(
t − k0

)
kperiod

)
,

(11)BIOM(t) = BIOMBL + CR(t),

(12)BIOM(t) = BIOMBL + CR1(t) + … + CRi(t),
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The second major complication in telemetry data 
modeling is the biomarker signals associated with hu-
man-animal interactions. These handling effects are typ-
ically observed at two instances: drug administration (at 
timepoint zero) and blood sample collection for PK mea-
surements (usually at 4 h after dose). The procedures are 
triggering stress-like reactions provoking sharp changes 
in CV markers, which can mask a treatment effect to a 
significant degree, especially if the PD response is most 
profound within the first 8 h after dose21 (Figure 2d,e).

There are many ways to reproduce handling effects in a 
mathematical model, the choice depends primarily on the 
richness of sampling and the shape of the data. Arguably 
the most common option is to use exponential function6,44:

where Mhe is the magnitude of a handling effect; khe is the 
reduction rate of a handling effect; and tevent is the time of 
onset of a handling effect.

Then, Equation  11 can be modified in the following 
way:

where H is the number of manipulations with animals that 
provoked handling effect.

The disadvantage of such a function is the immedi-
ate onset of the handling effect, governed by the Mhe 
parameter. It ignores the initial amplification in the 
CV marker dynamics and theoretically inevitably over-
predicts the effect between the last observation before 
the onset of the effect and the first observation after. 
Moreover, a caution should be exercised to avoid over-
lapping the time of the last observation before the han-
dling effect and the onset of the latter, represented by 
tevent in the modeling dataset.

To account for these limitations, more complex solu-
tions can be utilized, such as biexponential function 
(Equation 15) or Gaussian function (Equation 16):

(13)HE(t)=

{
Mhe ∗exp

(
−khe ∗

(
t− tevent

))
, t≥ tevent

0, t< tevent

(14)BIOM(t) = BIOMBL + CR(t) +

H∑
h=1

HEh(t)

F I G U R E  4  Observed and predicted heart rate in rats (a–c) and dogs (d–e) in control arms. (a) Single cosine function, different 
magnitude for each handling effect without physiological threshold. (b) Same as panel a, with physiological threshold. (c) Same as panel a, 
with two cosine functions. (d) Single cosine function, same magnitude for each handling effect without physiological threshold. (e) Same as 
panel d, no handling effects. Dots with error bars—mean ± SE, curves—model predictions.
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where Mhe is the magnitude of a handling effect; khe is the 
reduction rate of a handling effect; ka is the rate of appear-
ance of a handling effect; k1 is the position of the center of 
the peak of a handling effect; k2 is its standard deviation; 
and tevent is the time of onset of a handling effect.

These functions allow to capture the initial phase in 
a CV marker response provoked by the animal handling. 
However, the data rarely allows us to identify the addi-
tional parameter present in the equations. As such, the 
simplified solution represented by Equation 13 is usually 
sufficient.

As mentioned above, only two handling effects are 
usually observed within a dosing period (i.e., H = 2 in 
Equation  14). Both can be characterized by a unique 
set of parameters and functions. In practice, varying 
the magnitude of handling effects (Mhe) or even using 
the same set of parameters is enough to achieve proper 
parametrization and adequate description of the ob-
served data.

One more potential complication, in addition associ-
ated with the subsequent modeling of the pharmacolog-
ical effect of the drug, is the physiological threshold of a 
biomarker response. In certain instances, the handling 
effects are clearly observed in placebo-treated animals 
but are completely missing in the active arms of a study, 
as shown in Figure 2d,e. Furthermore, the magnitude of 
handling effects concurs with the maximum effect of the 
drug. Such behavior in biomarker dynamics is hypothe-
sized to be associated with complex physiological feed-
backs preventing hemodynamic markers from reaching 
life-incompatible values.45 As such feedbacks are out of 
scope of an empirical PK/PD model, the simplest solution 
is to explicitly indicate physiological limits in the model 
structure:

where BIOMmax and BIOMmin are maximum and mini-
mum thresholds of a biomarker, respectively.

Random effects are usually not considered for the 
parameters in the equations above. Furthermore, as all 

animals within a study live in the same conditions and 
are treated equally, there are no prerequisites to consider 
between-animal variability in circadian oscillations and 
handling effects. Baseline levels of biomarkers can be an 
exception, although contemplating the same challenges 
of an extremely small sample, as in the case with PK 
submodel.

IMPLEMENTATION OF THE DRUG 
EFFECT

The final part of the animal model development is the 
quantification of the safety effect of a drug by joining the 
PK, circadian variations, and handling effects submodels 
(parameters estimated in these submodels are fixed), and 
using the data from active arms of a telemetry study to para-
metrize the relationship between unbound drug concentra-
tion and biomarker response. It poses four main challenges: 
(1) the choice of functional relationship, (2) interference 
from the handling effects, (3) delay in the drug effect, and 
(4) apparent decrease of the drug effect over time.

For the first issue, two fundamental types of depen-
dencies are considered: with and without saturation. By 
default, the former is represented by a linear equation, the 
latter—by maximum effect (Emax) function41:

where Eff represents the drug effect function; keff is the 
slope of a linear function; Emax is the maximum effect; EC50 
is the drug concentration required to achieve 50% of the 
maximum effect; � if the Hill coefficient; and Cc represents 
the drug concentration in central compartment.

As such, treatment-mediated changes of a biomarker 
can be represented by the following equation:

(15)HE(t)=

{
Mhe ∗

(
exp

(
−khe ∗

(
t− tevent

))
−exp

(
−ka ∗

(
t− tevent

)))
, t≥ tevent

0, t< tevent

(16)HE(t) =

⎧
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Mhe ∗exp

�
−

�
t−k1

�2
2∗k2

2

�
, t≥ tevent

0, t< tevent

,

(17)
BIOM(t)=

⎧⎪⎨⎪⎩

BIOMBL+CR(t)+HE(t), for BIOMmin<BIOM(t)<BIOMmax

BIOMmax, for BIOM(t)≥BIOMmax

BIOMmin, for BIOM(t)≤BIOMmin

(18)Eff(t) = keff ∗Cc(t),

(19)Eff(t) =
Emax ∗Cc(t)

�

EC50
� + Cc(t)

�
,

(20)
BIOM(t) =

(
BIOMBL + CR(t) +

H∑
h=1

HEh(t)

)
∗ (1 ± Eff(t)).
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The product is used instead of the sum or difference to 
avoid potential conflicts in subsequent translation of the 
effect to humans.

Using the Emax equation is safer for the extrapolations 
and better corresponds to the physiology but requires 
the available range of doses to cover both the slope and 
the plateau of the safety signal. In addition, it may come 
in conflict with handling effects which can obscure the 
drug-induced changes, especially when they are close to 
the physiological limit (Figure 2f). If physiological limits 
are explicitly implemented into the model (Equation 17) 
and estimated at the previous step of the workflow, quan-
tification of a separate parameter of maximum drug effect 
becomes impossible, narrowing the choice of equation to 
the ones without saturation. Alternatively, the data points 
within the handling effect intervals can be disregarded for 
the parameter estimation procedure (Figure 5a). Both op-
tions are flawed, however, the first one can be considered 
more conservative for the animal-to-human translation, 
as no saturation in safety effect will be predicted for hu-
mans in such a case.

It can be noted that Equation 20 is a direct response 
model, and no differential equations are used to describe 
biomarker response. Meanwhile, the safety signals on CV 
markers often comes with a delay relative to the plasma 
drug concentration, that is, hysteresis. Hysteresis can be 
observed following a delay in distribution of a drug into 
the site of effect, sensitization of receptors, the forma-
tion of active metabolites, etc., and is usually detected by 
matching biomarker data with the drug concentration in 
a loop-like plot.46–48 This plot requires simultaneous mea-
surements of PK and biomarker data, which is not the 
case for telemetry studies. However, as a sequential mod-
eling approach is utilized in this workflow, simulated PK 
concentrations can be used instead of the actual observed 
ones (Figure  5b). Nevertheless, it is always advisable to 
evaluate the presence of temporal differences between PK 
and toxicokinetic response by replacing the explicit func-
tion with a turn-over equation for a biomarker or intro-
ducing biophase effect compartment and attempting to 
identify ke

46:

(21)
dCe
dt

= ke ∗
(
Cc − Ce

)
,

F I G U R E  5  Animal toxicodynamic data patterns and associated modeling solutions. (a) Observed and predicted response in placebo 
and treated cohorts with handling effect excluded from the drug effect model; dots with error bars—mean ± SE, curves—model predictions. 
(b) Hysteresis plot for mean baseline- and placebo-adjusted heart rate against the simulated PK; error bars—95% CI. Change over time 
in baseline- and placebo-adjusted heart rate against the simulated PK; dots with error bars—observed mean heart rate ± SE, for (c) solid 
curve—predicted PK in central compartment, dashed curve—predicted PK in biophase compartment, for (d) solid curve—predicted PK 
without adaptation function, dashed curve—predicted PK with adaptation function. CFP, change from placebo; CI, confidence interval; PK, 
pharmacokinetic.
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where Ce represents drug concentration in the biophase ef-
fect compartment; Cc represents drug concentration in the 
central compartment; ke is the transition rate between cen-
tral and biophase compartments so that Cc in Equations 18 
and 19 is replaced by Ce (Figure 5c). It is important to note 
that the PK submodel equations are not affected by the 
biophase.

The opposite situation is observed when the safety sig-
nal diminishes over time while drug exposure persists in 
the circulation, as illustrated by Figure 5d. This phenom-
enon can be explained by the adaptation of the CV sys-
tem to drug-induced stimuli and described by introducing 
time-dependent term into the drug effect equation:

where Effadapt represents the drug effect function after ad-
aptation; Eff is the drug effect function; ET50 is the time re-
quired to achieve 50% of the maximum effect; and τ is the 
Hill coefficient.

It is plausible to introduce mixed effects to drug ef-
fect parameters, such as keff (Equation  18) or Emax 
(Equation  19). Introducing random effects on EC50 
(Equation  19) is not recommended, as under limited 
number of doses and associated concentrations, Emax is 

expected to strongly correlate with EC50, which results in 
overestimation of standard deviation of the random ef-
fects for the parameters. Achieving adequate description 
of the treatment-mediated changes in CV markers con-
sidering the aspects outlined above concludes the model 
development and precludes animal-to-human translation.

CHALLENGES IN TRANSLATION

Translation modeling of the potential safety profile is 
a straightforward process, schematically outlined in 
Figure 6. In short, the animal PK model is replaced by a 
human PK model (including fraction unbound in plasma), 
developed from preclinical data and/or PBPK mod-
els.26,49,50 Circadian variations and handling effects are 
then excluded from human model development, whereas 
human baseline levels of the biomarkers are imputed 
(Table 2). Physiological limits and loss of effect over time 
are also excluded from the model structure. Biophase (i.e., 
the delay in a drug effect), if parametrized during animal 
model development, is kept in the human model.

This translational approach assumes that the safety 
profile is mostly off-target and the mechanisms causing 
undesirable effects of a drug on CV markers are simi-
lar between humans and animals. Where possible, an 

(22)Effadapt(t) = Eff(t) ∗

(
1 −

t�

ET50
� + t�

)
,

F I G U R E  6  Schematic representation of the animal-to-human translation workflow. (a) Animal model schematics. (b) Human model 
schematics. (c) The upper limit of 95% prediction interval for the absolute change from baseline in human heart rate under treatment at 
steady state; curves—model predictions. (d) Exposure-response plot for the relative change from baseline in human heart rate; solid curve 
with shaded area—predicted mean with 95% prediction interval, red dashed lines—exposure corresponding to the 97.5% percentile of the 
Cmax prediction distribution at selected doses, shaded region—exposure exceeding maximum concentrations observed in animals (i.e., 
extrapolation). CFB, change from baseline.
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integrated assessment on translation between preclinical 
species and humans is done based on the data generated 
from in  vitro molecular screens, such as Ion channels 
(hERG, Nav1.5, Cav1.2, IKs, and ITO), phenotypic screens 
(for detecting changes in cardiac contractility—hiPS-CM 
FliPR), secondary pharmacology panels (e.g., VEGFR2 
inhibition leads to blood pressure elevation), and appro-
priate scaling factors where available are applied to PK/
PD models.51 On occasions where the mechanisms are not 
understood, assuming similarity between species is rea-
sonable (i.e., fit for purpose at this stage of drug develop-
ment), although it ignores between-species differences in 
contribution of various regulatory systems toward the CV 
homeostasis and is the major limitation of the analysis. To 
partially compensate for the lack of physiological insight 
in the translation, random effects are applied on human 
PK parameters. A typical approach is to apply variability 
corresponding to the coefficient of variation of 25% to 40% 
on volume of distribution and clearance in a one-compart-
ment model, with inter-parameter covariance of 30%.52 
Furthermore, if random effects were introduced at the 
previous step of the workflow, they will also contribute to 
the variability in the predicted safety response.

The ultimate goal of these predictions is to evaluate 
the CV safety of the doses selected for the first-in-human 
(FIH) trials. We propose to make decisions based on the 
upper bound of the 95% prediction interval for the peak 

change from baseline in a biomarker level under treat-
ment at steady-state (Figure 6c,d). To calculate prediction 
interval, both uncertainty and variability in the model 
parameters should be taken into account.53 The former 
can only be included for the drug effect parameters from 
the previous step of the analysis workflow. It is advisable 
to sample at least 1000 random effects (i.e., subjects) per 
1000 population parameters (i.e., populations) per dosing 
scenario.39 Steady-state is considered to be achieved when 
peak levels of the drug and the biomarker are not chang-
ing between the dosing periods.

To fully grasp the theoretical exposure-response rela-
tionship, peak biomarker changes can be plotted against 
the 97.5 percentile of the prediction distribution of free 
maximum drug concentration at steady-state following 
simulations with a wide array of doses (Figure 6d). Then, 
the conclusions can be drawn on the therapeutic window 
itself after establishing the acceptable thresholds for the 
hemodynamic measurements of interest, although cau-
tion in inference should be exercised for the drug concen-
trations exceeding those observed in animals.

The following decision criteria were developed for 
heart rate (HR), systolic blood pressure (SBP), diastolic 
blood pressure (DBP), mean arterial pressure (MAP), 
and cardiac contractility (CC). According to the National 
Institutes of Health, a normal resting HR for adult humans 
ranges between 60 and 100 bpm.54 Exceeding these limits 

Biomarker Parameter Rats Dogs Humans

HR kw, bpm 37.81 (± 4.4) 9 (± 2.2)

k0, h 15.12 (± 0.5) 5.13 (± 4.6)

BIOMBL, bpm 333.91 (± 24.4) 87.05 (± 6.7) [60; 100]54

MAP kw, mmHg 8.04a

k0, h 2.32a

BIOMBL, mmHg 112.3a [95; 104]b

SBP kw, mmHg 4.67a 4.66 (± 1.2)

k0, h 16.6a 9.4 (± 12.2)

BIOMBL, mmHg 132a 140.67 (± 10.8) [120; 
129]55

DBP kw, mmHg 4.06a 3.94 (± 1.8)

k0, h 16a 7.8 (± 8.6)

BIOMBL, mmHg 92.9a 88.9 (± 8.9) [70; 79]55

CC (dP/dt) kw, mmHg/s 415.78 (± 238.85)

k0, h 2.09 (± 0.94)

BIOMBL, mmHg/s 4197.9 (± 310.4) >120056

Note: Parameter values for rats and dogs are taken from seven internal telemetry analyses if not indicated 
otherwise. Numbers are mean ± SE (animals) or healthy range (humans). Empty cells—data not 
available. HR—heart rate; MAP—mean arterial pressure; SBP—systolic arterial pressure; DBP—diastolic 
arterial pressure; CC—cardiac contractility.
aValue from a single telemetry study.
bCalculated by averaging corresponding SBP and DBP.

T A B L E  2  Baseline hemodynamic 
parameters and circadian variation 
parameters for animals and human.
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would indicate bradycardia and tachycardia, respectively. 
Therefore, taking 80 bpm HR as a reference, treatment-in-
duced changes in HR should not surpass ±20 bpm, or 
±25% from baseline. This threshold is more conservative 
than that proposed by Leishman et al. where the magni-
tude of effect in humans was suggested by 40 bpm HR in-
crease or HR reaching above 110 bpm.19 Likewise, healthy 
SBP and DBP values correspond to less than 130 and less 
than 80 mmHg, whereas respective measurements above 
140 and 90 mmHg are considered hypertension.55 As such, 
we propose to consider SBP changes exceeding ±10 mmHg 
(±8%) and DBP changes exceeding ±10 mmHg (±12.5%) 
as meaningful in a clinical setting. Consequently, MAP 
should not change above or below ±10 mmHg (±10%) for 
a dosing regimen to be considered as safe. This threshold 
is also more conservative than that assumed in Leishman 
et al.19 According to the reference values for dP/dt (a mea-
sure of CC)—dP/dt greater than 1200 mmHg/s is consid-
ered healthy. Reduced contractility is diagnosed if dP/dt 
less than 800 mmHg/s, that is, a decrease of CC within 
34% is considered to be acceptable.56 The decision criteria 
discussed provides a threshold for meaningful (clinically 
and reliably measurable) changes that may need clinical 
attention. Although it should be noted that much smaller/
larger changes in CV parameters may or may not have im-
pact on cardiac health depending on the patient popula-
tion and compensatory mechanisms. Hence, the clinical 
implications of changes of any magnitude should always 
be interpreted in context of the patient population, under-
lying comorbidities, comedications, etc.

REPRODUCIBLE EXAMPLE

In the framework of this tutorial, a practical example 
was coded in R software and Monolix environment based 
on the telemetry studies of a kinase inhibitor tested as a 
therapy for central nervous system-related indications, to 
provide a pharmacometrician with a template for quick 
deployment of the workflow and minimize technical 
procedures required to perform the analysis (Supporting 
Information S1).

The example is structured into three main folders: 
“Data,” “Models,” and “Scripts.” Both standardized mod-
eling dataset and data specification files can be found 
in the “Data” folder. It contains the data from two stud-
ies—telemetry and PKs—performed in rats. In a teleme-
try study with a crossover design, eight male rats received 
placebo, five and 50 mg of a drug by oral gavage. HR and 
blood pressure were recorded at 1 h before the dose and for 
the next 23 h; aggregation interval was 15 min. PK samples 
were taken 2 h after dose (1 sample per rat). In a PK study, 
the drug concentration was measured at timepoints 0, 0.5, 

1, 2, 4, 8, 12, and 24 h (8 samples per rat) in four rats re-
ceiving 5, 10, 25, or 50 mg dose of investigated compound 
by oral gavage.

The “Models” folder contains the library of the struc-
tural models in MLXTRAN format, categorized by the re-
spective stages of the workflow, and final Monolix projects 
in the “Monolix” subfolder, required for the reproducible 
example to run out of box.

Similarly, the “Scripts” folder holds one script for the 
exploratory data analysis and four scripts associated with 
different elements of the workflow. The scripts are de-
signed to run in R version 4.0.2, with packages tidyverse 
(version 1.3.1), readxl (version 1.3.1), cowplot (version 
1.1.1), PKNCA (version 0.9.5), and RsSimulx (version 
1.0.0), and Monolix (version 2020R1). Once sourced, the 
scripts will store essential results in the newly generated 
“Results” folder and associated subfolders.

Outputs of the exploratory data analysis (s01_EDA.R) 
provide priors for the subsequent modeling: nonlin-
ear increase of the drug exposure with dose, notable 
between-study variability, and apparent physiological 
threshold in the magnitude of the handling effects, as well 
as handling effects interfering with the safety effect of the 
drug.

Script s02_PK.R contains semi-automatic code for 
calibration and benchmarking of the PK models. The 
two-compartment PK model with linear excretion from 
the intestine, saturable absorption described by Michaelis–
Menten equation and categorical covariate “Study” on the 
IA50 parameter was chosen as optimal.

All investigated modeling solutions for handling ef-
fects and circadian variations are available in the s03_
Placebo.R. As an apparent threshold in the magnitude of 
the handling effects was identified in placebo data, var-
ious handling effect functions were tested according to 
Table 1. The optimal model contained exponential func-
tion for handling effects and between-subject variability 
on baseline HR parameter.

Implementation of the drug effect, model calibration, 
and evaluation are available in s04_PKPD.R and is accom-
panied by an additional graphical analysis of predicted PK 
and toxicodynamic relationship. Optimal functional rela-
tionship was established to be linear without effect com-
partment and with exponential time adaptation function.

Animal-to-human translation of the drug effect is 
coded in s05_Translation.R script. The doses of interest 
for human trial were 10, 50, 100, 140, 200, 300, and 500 mg 
administered orally once per day. Moderate variability for 
the volume of distribution and clearance parameters with 
30% covariance was implemented for human PK model. 
The upper limit of 95% prediction interval at steady-state 
does not exceed 25% threshold for all doses of interest, ex-
cept the highest (500 mg).
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DISCUSSION AND CONCLUSIONS

Mathematical modeling is a powerful and irreplaceable 
tool for decision making in research and development 
of new medicines, especially in such delicate matters 
as FIH dose selection and substantiation.36,57 Various 
techniques and data are used to boost confidence in the 
CV safety of a drug, one being model-based analysis of 
preclinical telemetry data of hemodynamic markers.5 
While utilizing basic principles of PK/PD modeling in 
model selection criteria and overall workflow, these 
analyses are associated with numerous complications, 
such as small number of animals, prominent handling 
effects, circadian variations, supratherapeutic doses, 
sparse PK sampling, etc.5,19 Altogether, and in no small 
part due to the narrow timelines assigned for the analy-
ses (2–4 weeks), it substantiates the need for a proper 
guide covering key steps and specifics of the animal 
model development, translation, and inference. This 
tutorial provides a comprehensive sequential workflow, 
including animal PK model development, modeling of 
the circadian variations and handling effects, parametri-
zation of the safety effect, and animal-to-human transla-
tion, addressing typical challenges in respective sections 
and supplying the theory with a reproducible example 
in R and Monolix software.

It should be noted that there are some features of the 
telemetry study design which would complicate an anal-
ysis despite the implemented modeling solutions and as-
sumptions. We recommend discussing the following with 
the research team beforehand. First, for PK/PD modeling 
of telemetry data, all animals are assumed to undergo 
study procedures at the same time, while in reality, drug 
administration or PK sampling collection of all animals 
in the study may take up to 30–60 min. Thus, study proce-
dures should be designed to minimize differences in an-
imal handling and the level of animal disturbance as far 
as possible. In addition, averaging continuous telemetry 
data in 30-min time intervals or longer impairs the quan-
tification of handling effects and circadian variations. 
Study duration typically should be designed to accommo-
date the PK profile and to cover a concentration-response 
range. However, due to feedback loops and compensatory 
mechanisms of a CV system, hemodynamic parameters 
may demonstrate biphasic PD profile. Although the PD 
changes in the second phase arising from compensatory 
mechanisms are expected to be considerably lower than 
the drug-mediated changes in the first phase, study de-
signs can be altered to take the biphasic behavior into 
consideration. Likewise, the lack of PK sampling at one of 
drug disposition phases impairs the identification of the 
optimal structural model. Last, using less than four doses 

usually significantly complicates the parametrization of 
the saturable processes.

Modeling solutions, suggested in the current tutorial, 
cover a wide broad of data complexities that may arise 
in telemetry studies. However, there are alternative ways 
to overcome those complexities and build a useful PK/
PD model. For instance, instead of separate modeling of 
circadian variations and handling effect for placebo, one 
can model placebo-corrected data and skip placebo mod-
eling step of the workflow. Although this can be a working 
solution, there are some shortcomings with this approach. 
For example, placebo-corrected data possess higher vari-
ance than treatment data without correction and makes 
it more difficult to identify drug effect. In addition, some-
times the handling effect is diminished or even eliminated 
in treatment data, and the placebo-correction would lead 
to subtraction of the handling effect from drug effect and 
consecutively interferes with estimation of drug effect pa-
rameters. Finally, placebo-correction works best within a 
Latin square framework but is less effective for ascending 
dose or parallel dose designs because the placebo is only 
controlling partially for inter-day and inter-group vari-
ability. Thus, separate modeling of placebo data and treat-
ment data provide more control for precise estimation of 
drug-effect parameters and is more generally applicable 
across study designs.

The implementation of a direct model with a bio-
phase effect compartment rather than indirect response 
model to capture the delay between PK and toxicody-
namic effect is the matter of debate. On the one side, 
an indirect response model is more appropriate for time 
lags description not only due to distributional effects but 
also due to turnover of the biomarker, receptor-transduc-
tion, or other rate-limiting pharmacodynamic events.58 
Moreover, the effect compartment model assumes equal 
time delay for all dose levels and consequently provides 
poor prediction of maximum response time in case of its 
dose-dependent nature.59 On the other side, the choice 
of whether the drug affects the production or loss of the 
biomarker is compounded by the lack of evidence about 
the mechanism of a drug action. Furthermore, human 
translation of the indirect response model results is chal-
lenging as it requires more assumptions to be made and 
investigations to be done to account differences in the 
CV system functioning between species. We encourage 
to use the direct model as a base approach if it provides 
adequate description of the peak response in addition to 
studying the dependence of the response peak time on 
dose and existence of the hypotheses about safety mech-
anism of action.

Translation of the pharmacological and potential 
safety effects across species is a challenge in its own way.60 
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Estimation of human PK parameters from preclinical data 
by PBPK modeling and other approaches is discussed 
extensively elsewhere and is not in the scope of this 
paper.26,50 Moreover, the common rationale for the drug 
effect adjustment between species in the framework of 
empirical modeling of telemetry data is limited and is an 
ongoing subject of active research.51 Earlier cross-pharma 
work found that translation from conscious telemetered 
dog to human was good for corrected QT interval (QTc) 
but poor for hemodynamic effects, such as HR and dia-
stolic BP.61 Part of the explanation for the apparent poor 
translation was posited to be the cross-pharma nature of 
the dataset with varying study designs and criteria for in-
terpretation. In contrast, the Bhatt et al. paper describes 
translation experience based on datasets that are much 
more consistent.62 In this study, the rat CV model showed 
good concordance with BP and HR changes in large ani-
mal (LA), such as the dog and monkey. Similarly, CV mea-
sures of BP and HR in LA showed good concordance to 
clinical changes. The directionality of BP and HR change 
was conserved between LA to humans, whereas for rat to 
LA comparisons, the directionality of change was oppo-
site for 23%–26% of compounds.

In terms of the translational impact, caution should 
be exercised while translating CV effects directly from 
rodents to humans in part because of the noted discrep-
ancies and because the level of confidence about the ther-
apeutic exposure is much lower when rodent studies are 
conducted (early) versus the large animal studies (just 
prior to FIH studies). Studies in rodents are neverthe-
less important to identify potential safety signals at early 
stages of drug development. Data generated in LA prior 
to FIH are often valuable for translational purposes, both 
in terms of magnitude and directionality of changes in 
CV parameters. Overall, a robust translational strategy 
where possible should be adopted case by case based on 
the mechanistic knowledge on the pathways driving the 
observed CV effects.

Although this tutorial presents modeling workflow and 
decisions criteria for assessment of drug-mediated effect 
on CV system in the context of safety assessment, general 
principles of model building remain valid for modeling of 
drugs effects in any context of concentration-CV effect rela-
tionship (e.g., explore PK/PD relationship of drugs designed 
for treating conditions such as heart failure, hypertension, 
atrial fibrillation, etc.). However, for drugs with an intended 
effect on CV system, the translation of results from preclin-
ical disease models to humans can be challenging. A thor-
ough understanding on the similarities/differences in (a) 
biology between preclinical disease models and humans, 
(b) the steepness in concentration-response relationship, 
and (c) a prior understanding on translation is required. 

While these aspects are important and require proper dis-
cussion, they are outside of the scope of the current tutorial.

Finally, this tutorial is also an attempt to formalize 
decision criteria, based on the reference values of hemo-
dynamic parameters available for humans.54–56 We use a 
conservative approach and consider both variability and 
uncertainty in our predictions; the upper bound of the 
95% prediction interval for the peak biomarker value at 
treatment steady-state is used to compare it with the ac-
ceptable ranges. As phase I of the clinical trials is initiated, 
the incoming ascending dose data should be used contin-
uously to validate the predictions and adjust the model, if 
necessary, thereby ensuring the safety of the subsequent 
dosing regimens.

As an alternative, mechanistic models are being de-
veloped to capture the intricate relationships between 
CV parameters and mechanisms of action of a drug.6,7,43 
Extensive validation and application of a quantitative 
systems model may eventually improve our ability to 
reliably predict the CV safety between animals and hu-
mans. Despite the shortcomings, empirical PK/PD mod-
eling continues to play a vital part in integrated CV safety 
assessment, allowing for quantitative assessment of CV 
risk prior to FIH trials, enabling design of dose escala-
tion, and planning of appropriate monitoring and man-
agement strategies for CV safety in clinical trials.

In the end, we believe that by following the workflow 
proposed in this tutorial, a pharmacometrician will be 
able to conduct a proper and robust nonclinical CV safety 
analysis and provide quantitative basis for the accurate 
safety assessment in early clinical trials.
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